

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-I, DIFFERENTIAL EQUATIONS

		S.A.Q Including	E.Q(Including	Total
Unit	TOPIC	choice 5Marks	choice) 10 Marks	Marks
I	Differential Equations of First order and first degree	2	2	30
	Differential Equations of First order and but not			
II	first degree	1	2	25
	Higher Order Linear Differential			
III	Equations(with constant coefficients) – I	2	2	30
	Higher Order Linear Differential Equations			
IV	(withconstant coefficients) – II	2	2	30
	Higher Order Linear Differential Equations(with			
V	non-constant coefficients)	1	2	25
	TOTAL	8	10	140

Short answer questions	: 5 X 5 M	= 25 M
Essay questions	: 5 X 10 M	= 50 M

Government Degree College, Ravulapalem

MODEL QUESTION PAPER (Sem-End) B.Sc. DEGREE EXAMINATIONS

Semester – I Course-1: DIFFERENTIAL EQUATIONS

Time: 3Hrs

Max.Marks:75M

5 X 5 M=25 M

SECTION - A

Answer any FIVE questions.

1. Solve $(1 + e^{x/y})dx + e^{x/y}(1 - \frac{x}{y})dy = 0$ 2. Solve $(y - e^{\sin^{-1}x})\frac{dx}{dy} + \sqrt{1 - x^2} = 0$ 3. Solve sin px cos y = cos px siny + p. 4. Solve $[D^2 - (a + b)D + ab]y = 0$ 5. Solve $(D^2 - 3D + 2) = \cosh x$ 6. Solve $(D^2 - 4D + 3)y = \sin 3x \cos 2x$. 7. Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13 y = 8 e^{3x} \sin 2x$.

8. Solve
$$x^2y'' - 2x(1+x)y' + 2(1+x)y = x^3$$

SECTION - B

Answer ALL the questions.

5 X 10 M = 50 M

- 9. (a) Solve $\frac{dy}{dx} + y = y^2 \log x$. (Or) (b) Solve $\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4}(x + xy^2) dy = 0$
- 10. (a) Solve $p^2 + 2pycotx = y^2$. (Or) (b) Solve $y + Px = P^2x^4$ 11. (a) Solve $(D^3 + D^2 - D - 1)y = \cos 2x.11$
- (OR) (b) Solve $(D^2 - 3D + 2)y = \sin e^{-x}$.
- 12. (a) Solve $(D^2 2D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$ (Or) (b) Solve $\frac{d^2y}{d^2y} + 3\frac{dy}{d^2y} + 2y = xe^x \sin x$

(b) Solve
$$\frac{dy^2}{dx^2} + 3\frac{dy}{dx} + 2y = xe^x \sin x$$

13. (a) Solve $(D^2 - 2D) y = e^x \sin x$ by the method of variation of parameters. (Or)

(b) Solve
$$3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x$$

Mathematics

BLUE PRINT FOR QUESTION PAPER PATTERN

COURSE-II THREE-DIMENSIONAL ANALYTICAL SOLID GEOMETRY

Unit	ΤΟΡΙϹ	S.A.Q (Including choice)	E.Q (Including choice)	Total Marks
Ι	The Plane	2	2	30
II	The RightLine	2	2	30
III	The Sphere	2	2	30
IV	The Sphere & The Cone	1	2	25
v	The Cone	1	2	25
	Total	8	10	140

Short answer questions	$: 5 \times 5 M = 25 M$
Essay questions	$: 5 \times 10 \text{ M} = 50 \text{ M}$

Mathematics

Government Degree College, Ravulapalem

MODEL QUESTION PAPER (SEM-END)B.Sc. DEGREE EXAMINATIONS

SEMESTER – II COURSE-2: SOLID GEOMETRY

Max.Marks:75M

SECTION - A

Answer any FIVE questions.

Time: 3Hrs

5 X 5 M=25 M

- 1. Find the equation of the plane through the point (-1,3,2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
- 2. Find the bisecting plane of the acute angle between the planes 3x 2y 6z + 2 = 0, -2x + y - 2z - 2 = 0.
- 3. Find the image of the point (2,-1,3) in the plane 3x-2y+z=9.
- 4. Show that the lines 2x + y 4 = 0 = y + 2z and y + 3z 4 = 0, 2x + 5z 8 = 0 are coplanar.
- 5. A variable plane passes through a fixed point (a, b, c). It meets the axes in A, B, C. Show that the Centre of the sphere OABC lies on $ax^{-1}+by^{-1}+cz^{-1}=2$.
- 6. Show that the plane 2x-2y+z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0$ and find the point of contact.
- 7. Find the equation to the cone which passes through the three coordinate axes and the lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{2} = \frac{y}{1} = \frac{z}{1}$
- 8. Find the equation of the enveloping cone of the sphere $x^2 + y^2 + z^2 + 2x - 2y = 2$ with its vertex at (1, 1, 1).

SECTION - B

Answer ALL the questions.

5 X 10 M = 50 M

9. (a) A plane meets the coordinate axes in A, B, C. If the centroid of $\triangle ABC$

(a, b, c), show that the Equation of the plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$.

(**OR**)

(b) A variable plane is at a constant distance p from the origin and meets the axes in A,B,C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2}+y^{-2}+z^{-2}=16p^{-2}$.

Mathematics

10. (a) Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$; $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.

(OR)

(b) Prove that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$; $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar. Also find their point of intersection and the plane containing the lines.

11.(a) Show that the two circles $x^2+y^2+z^2-y+2z = 0$, x-y+z = 2; $x^2+y^2+z^2+x-3y+z-5 = 0$, 2x-y+4z-1=0lie on the same sphere and find its equation.

(**OR**)

- (b) Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cuts orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
- 11. (a) Find the limiting points of the coaxial system of spheres $x^2+y^2+z^2-8x+2y-2z+32=0, x^2+y^2+z^2-7x+z+23=0$.

(OR)

(b) Find the equation to the cone with vertex is the origin and whose base curve is $x^2+y^2+z^2+2ux+d=0$.

13 (a) Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the coordinate Planes and find its reciprocal cone.

(**OR**)

(b) Find the equation of the sphere $x^2+y^2+z^2-2x+4y-1=0$ having its generators parallel to the line x = y = z.

BLUE PRINT FOR QUESTION PAPER PATTERN COURSE-III, ABSTRACT ALGEBRA

Unit	ΤΟΡΙϹ	S.A.Q (Including choice)	E.Q (Including choice)	Total Marks
Ι	Groups	2	2	30
II	Subgroups, Cosets & Lagrange's	1	2	25
III	Normal Subgroups	1	2	25
IV	Homomorphism and Permutations	2	2	30
V	Rings	2	2	30
Total		8	10	140

S.A.Q.	= Short answer questions	(5 marks)	
E.Q.	= Essay questions	(10 marks)	

MODEL QUESTION PAPER (Sem-End)B.A./B.Sc. DEGREE EXAMINATIONS

Semester – III Course-3: ABSTRACT ALGEBRA

Time: 3Hrs

SECTION-A

Answer any FIVE questions.

- 1. Show that the set $G = \{x/x = 2^a 3^b \text{ and } a, b \in Z\}$ is a group under multiplication
- Define order of an element. In a group G, prove that if a ∈ G then O(a) = O(a)⁻¹.
- If H and K are two subgroups of a group G, then prove that HK is a subgroup ⇔ HK=KH
- 4. If G is a group and H is a subgroup of index 2 in G then prove that H is a normal subgroup.
- 5. Examine whether the following permutations are even or odd
 - ${\rm i)} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 1 & 4 & 3 & 2 & 5 & 7 & 8 & 9 \end{pmatrix} \quad {\rm ii)} \quad \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 6 & 7 & 1 \end{pmatrix}$
- 6. If f is a homomorphism of a group G into a group G', then prove that the kernel of f is a normal of G.

7. Prove that the characteristic of an integral domain is either prime or zero.

8. Define a Boolean Ring and Prove that the Characteristic of a Boolean Ring is 2.

SECTION - B

Answer ALL the questions.

9. a) Show that the set of nth roots of unity forms an abelian group under multiplication.

(Or)

b) In a group G, for $a, b \in G$, O(a)=5, b \neq e and $aba^{-1} = b^2$. Find O(b).

10. a) The Union of two subgroups is also a subgroup
one is contained in the other.

(Or)

b) State and prove Langrage's theorem.

 a) Prove that a subgroup H of a group G is a normal subgroup of G iff the product of two right cosets of H in G is again a right coset of H in G.

b) Define Normal Subgroup. Prove that a subgroup H of a group G is normal iff xHx⁻¹ = H ∀ x ∈ G.
12. a) State and prove fundamental theorem of homomorphisms of groups.

(Or)

b) Let Sn be the symmetric group on n symbols and let An be the group of even permutations. Then

show that A_n is normal in S_n and O(A_n) = $\frac{1}{2}(n!)$

13. a) Prove that every finite integral domain is a field.

(Or)

b) Let S be a non empty sub set of a ring R. Then prove that S is a sub ring of R if and only if a-b ∈ S and ab ∈ S for all a, b ∈ S.

5 X 10 M = 50 M

Max.Marks:75M

5 X 5 M=25 M

BLUE PRINT FOR QUESTION PAPER PATTERN

COURSE-IV, REAL ANALYSIS

Unit	ΤΟΡΙϹ	S.A.Q(Including choice)	E.Q(Including choice)	Total Marks
Ι	Real Sequence	1	2	25
II	Infinite Series	2	2	30
III	Limits and Continuity	1	2	25
IV	Differentiation and Mean Value Theorem	2	2	30
V	Riemann Integration	2	2	30
	TOTAL	8	10	140

S.A.Q.	= Short answer questions	(5 marks)

E.Q. = (10 marks) Essay questions

MODEL QUESTION PAPER (Sem-End)B.A./B.Sc. DEGREE EXAMINATIONS

Course-4: REAL ANALYSIS

Time: 3Hrs

SECTION - A

Answer any FIVE questions.

1. Prove that every convergent sequence is bounded.

- 2. Examine the convergence of $\frac{1}{1.2} \frac{1}{3.4} + \frac{1}{5.6} \frac{1}{7.8} + \cdots$
- 3. Test the convergence of the series $\sum_{n=1}^{\infty} (\sqrt[3]{n^3 + 1} n)$.
- 4. Examine for continuity of the function f defined by f(x) = |x| + |x 1| at x = 0 and 1.

5. Show that $f(x) = x \sin \frac{1}{x}$, $x \neq 0$; f(x) = 0, x = 0 is continuous but not derivable at x=0.6. Verify

Rolle's theorem for the function $f(x) = x^3 - 6x^2 + 11x - 6$ on [1, 3]

7. If $f(x) = x^2 \forall x \in [0,1]$ and $p = \{0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1\}$ then find L(P, f) and U(P, f).

8. Prove that if f: $[a, b] \rightarrow R$ is continuous on [a, b] then f is R- integrable on [a, b].

SECTION – B

Answer ALL the questions.

5 X 10 M = 50 M

9. (a) If $\mathbf{s_n} = \mathbf{1} + \frac{1}{2!} + \frac{1}{3!} + \dots + \dots + \frac{1}{n!}$ then show that $\{\mathbf{s_n}\}$ converges. (OR)

 $(\mathbf{O}\mathbf{D})$

(b) State and prove Cauchy's general principle of convergence.

10. (a) State and Prove Cauchy's nth root test.

(b) Test the convergence of
$$\sum \frac{x^n}{x^n + a^n}$$
 ($x > 0, a > 0$)

11. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be such that

$$f(x) = \frac{\sin(a+1)x + \sin x}{x} \text{ for } x < 0$$
$$= \frac{C}{\left[\frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}}\right]} \text{ for } x > 0$$

Determine the values of a, b, c for which the function f is continuous at x=0.

5 X 5 M=25 M

Max.Marks:75M

(b) If f: [a, b] \rightarrow R is continuous on [a, b] then prove that f is bounded on [a, b]

12. (a) Using Lagrange's theorem, Show that $x > log(1 + x) > \frac{x}{(1+x)} \forall x > 0$.

(**OR**)

(b) State and prove Cauchy's mean value theorem...

13. (a) State and prove Riemann's necessary and sufficient condition for R- integrability.

(OR)

(b) Prove that
$$\frac{\pi^3}{24} \le \int_0^{\pi} \frac{x^2}{5+3\cos x} dx \le \frac{\pi^3}{6}$$

BLUE PRINT FOR QUESTION PAPER PATTERN

COURSE-V, LINEAR ALGEBRA

Unit	TOPI C	S.A.Q (Includingchoice)	E.Q Including choice	Marks Allotted
Ι	Vector spaces - I	2	2	30
Π	Vector spaces - II	1	2	25
III	Linear Transformation	2	2	30
IV	Matrices	1	2	25
V	Inner product spaces	2	2	30
Total		8	10	140

S.A.Q.	= Short answer questions	(5 marks)
E.Q.	= Essay questions	(10 marks)

E.Q. = Essay questions

MODEL OUESTION PAPER (Sem-End)B.A./B.Sc. DEGREE EXAMINATIONS

Semester -IV

Course-5: LINEAR ALGEBRA

Time: 3Hrs

Answer any FIVE questions.

1. Let p, q, r be fixed elements of a field F. Show that the set W of all triads (x, y, z) of elements of F, such that px+qy+rz=0 is a vector subspace of $V_3(R)$.

SECTION - A

- 2. Define linearly independent & linearly dependent vectors in a vector space. If α , β , γ are linearly independent vectors of V(R) then show $that \beta + \gamma, \gamma + \alpha$ are also linearly independent.
- 3. Prove that every set of (n + 1) or more vectors in an n dimensional vector space is linearly dependent.
- 4. The mapping T : $\forall 3(R)$ V3(R) is defined by T(x,y,z) = (x-y,x-z). Show that T is a linear transformation.
- 5. Let $\mathbf{T}: \mathbb{R}^3 \to \mathbb{R}^2$ and $\mathbf{H}: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T (x, y, z)= (3x, y+z) and H (x, y, z)= (2x-z, z) y). Compute i) T+H ii) 4T-5H iii) TH iv) HT.
- 6. If the matrix A is non-singular, show that the eigen values of A^{-1} are the reciprocals of the eigen values of A.
- 7. State and prove parallelogram law in an inner product space V(F).
- 8. Prove that the set S = $\left\{ \left(\frac{1}{3}, \frac{-2}{3}, \frac{-2}{3}\right), \left(\frac{2}{3}, \frac{-1}{3}, \frac{2}{3}\right), \left(\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}\right) \right\}$ is an orthonormal set in the inner product space $R^{3}(R)$ with the standard inner product.

SECTION - B

Answer ALL the questions.

9. (a) Define vector space. Let V (F) be a vector space. Let W be a non empty sub set of V. Prove that the Necessary and sufficient condition for W to be a subspace of V is $a, b \in F$ and $\alpha, \beta \in V => \alpha \alpha + b \beta \in W$

(**OR**)

(b) Prove that the four vectors (1,0,0), (0,1,0), (0,0,1) and (1,1,1) of $V_3(C)$ form linearly dependent set, but any three of them are linearly independent.

5 X 10 M = 50 M

Max.Marks:75M

5 X 5M=25 M

10. (a) Define dimension of a finite dimensional vector space. If W is a subspace of a finite Dimensional vector space V (F) then prove that W is finite dimensional and dim $W \leq n$. (OR)

(b) If W be a subspace of a finite dimensional vector space V(F) then Prove that

 $\dim \frac{V}{W} = \dim V - \dim W$

11. (a) Find T (x, y, z) where
$$T: \mathbb{R}^3 \to \mathbb{R}$$
 is defined by T (1, 1, 1) = 3, T (0, 1, -2) = 1, T(0, 01) = -2

(**OR**)

(b) State and prove Rank Nullity theorem.

12. (a) Find the eigen values and the corresponding eigen vectors of the matrix A= $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$

(**OR**)

(b) State and prove Cayley-Hamilton theorem.

13. (a) State and prove Schwarz's inequality in an Inner product space V(F).

(OR)

(b) Given $\{(2,1,3), (1,2,3), (1,1,1)\}$ is a basis of $\mathbb{R}^3(\mathbb{R})$. Construct an orthonormal basis

usingGram-Schmid orthogonalization process.

DEPT OF MATHS GDC RVPM

ADIKAVI NANNAYYA UNIVERSITY :: RAJAMAHENDRAVARAM CBCS/ SEMESTER SYSTEM (W. e. f 2020 – 21 Admitted Batch) B. A./B. Sc. MATHEMATICS COURSE – VI(A), NUMERICAL METHODS. MATHEMATICS MODEL PAPER

Max. Marks: 75M

Time: 3Hrs

5 X 5 M = 25 M

SECTION – A

Answer any FIVE questions. Each question carries FIVE marks.

1) Find the function whose first difference is $9x^2 + 11x + 5$.

2) Find the missing term in the following table

Х	0	1	2	3	4
У	1	1.5	2.2	3.1	4.6

3) If $f(x) = \frac{1}{x^2}$ then find the divided differences f(a, b) and f(a, b, c).

4) Using Gauss forward interpolation formula to find f(2.5) from the following table.

Х	1	2	3	4
f(x)	1	8	27	64

5) Derive the derivative $\left(\frac{dy}{dx}\right)_{x=x_0}$ by using Newton's backward interpolation formula.

6) Find $\frac{dy}{dx}$ at x = 0, using the table

х	0	2	4	6	8	10
f(x)	0	12	248	1284	4080	9980

7) Evaluate the integral $\int_0^6 \frac{dx}{1+x}$ by using Simpson's $\frac{1}{3}$ rule.

8) Using Taylor's series method, solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4, given that

y = 0 when x = 0.

SECTION – B

Answer any ALL questions. Each question carries TEN marks. $5 \times 10 M = 50 M$

9 a) State and Prove Newton's forward interpolation formula.

9 b) Show that i)
$$\mu^2 = 1 + \frac{1}{4}\delta^2$$
 and ii) $1 + \mu^2 \delta^2 = \left(1 + \frac{1}{2}\delta^2\right)^2$

10 a) State and prove Bessel's formula.

OR

10 b) Using Lagrange's formula fit a polynomial to the following data and hence find f(1).

Х	-1	0	2	3
f(x)	8	3	1	12

11 a) Derive the derivatives $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_0$ by using Stirling's interpolation formula.

OR

11 b) Compute $f^{1}(4)$ and $f^{1}(5)$ from the following table

Х	1	2	4	8	10
f(x)	0	1	5	21	27

12 a) State and prove General Quadrature Formula.

OR

12 b) Evaluate the integral $\int_0^6 \frac{dx}{1+x^3} dx$ by using Weddle's rule.

13 a) Use Runge – Kutta method to evaluate y (0.1) and y (0.2) given that $y^1 = x + y$, initial condition y(0) = 1.

OR

13 b) Given $\frac{dy}{dx} = x + y$ with initial condition y (0) = 1. Find y(0.05) and y(0.1), correct to 6 decimal places by using Euler's modified method.

ADIKAVI NANNAYA UNIVERSITY, RAJAMAHENDRAVARAM B.A./B.Sc., FIFTH SEMESTER MATHEMATICS MODEL PAPER 7A: MATHEMATICAL SPECIAL FUNCTIONS

(w. e. f. 2020-21 admitted batch)

SECTION-A

TIME: 3hrs

MAX.MARKS:75

5 X 5 = 25 Marks

- 1. Evaluate $\int_0^2 \frac{x^2 dx}{\sqrt{(2-x)}}$
- 2. Show that $\Gamma\left(\frac{1}{2}+x\right)$ $\Gamma\left(\frac{1}{2}-x\right) = \frac{\pi}{\cos \pi x}$

Answer any **FIVE** questions. Each question carries 5 marks.

- 3. If the power series $\sum a_n x^n$ is such that $a_n \neq 0$ for all n and $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R}$ then prove that $\sum a_n x^n$ is convergent for |x| < R and divergent for |x| > R
- 4. Prove that $H_n''(x) = 4n(n-1) H_{n-1}(x)$
- 5. Prove that $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$
- 6. Prove that $P_n(-x) = (-1)^n P_n(x)$
- 7. Prove that $P'_n(1) = \frac{1}{2}n(n+1)$
- 8. Prove that $J_{-n}(x) = (-1)^n J_n(x)$ where n is a positive integer

SECTION -B

Answer any **FIVE** questions. Each question carries 10 marks. $5 \times 10 = 50$ Marks

9(a). Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$

OR

9(b). Prove that $2^n \Gamma\left(n + \frac{1}{2}\right) = 1.3.5 \dots (2n-1)\sqrt{\pi}$ where *n* is a positive integer

10(a). Solve y' - y = 0 by power series method

OR

10(b). Find the power series solution in powers of (x-1) of the initial value problem

$$xy'' + y' + 2y = 0, y(1) = 1, y'(1) = 2.$$

11(a). Prove that $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$

11(b). Prove that $2xH_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$

12(a). Prove that $(1 - 2xh + h^2)^{-1/2} = \sum_{n=0}^{\infty} h^n P_n(x)$

12(b).
$$\int_{-1}^{1} P_m(x) P_n(x) dx = 0 \text{ if } m \neq n$$

13(a). $xJ'_n(x) = n J_n(x) - x J_{n+1}(x)$

OR

13(b). Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$
